Step of Proof: last_cons
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
last
cons
:
T
:Type,
L
:(
T
List),
x
:
T
. (
(
null(
L
)))
(last([
x
/
L
]) = last(
L
))
latex
by ((((((Unfold `last` 0)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat
C
3:n)) (first_tok :t) inil_term)))
)
CollapseTHEN (Reduce 0))
)
CollapseTHEN (Assert ||
L
|| > 0
C
THENL [((((RW assert_pushdownC (-1))
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat
C
1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
)
CollapseTHEN (Easy))
;
Collaps
((
C
RWO "select_cons_tl" 0)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 2:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
]))
latex
C
.
Definitions
True
,
T
,
False
,
A
B
,
P
Q
,
P
&
Q
,
t
T
,
,
P
Q
,
i
>
j
,
Y
,
||
as
||
,
last(
L
)
,
A
,
P
Q
,
x
:
A
.
B
(
x
)
Lemmas
null
wf
,
not
wf
,
le
wf
,
squash
wf
,
select
wf
,
length
wf1
,
select
cons
tl
,
non
nil
length
,
assert
of
null
,
assert
wf
,
not
functionality
wrt
iff
origin